97 research outputs found

    Adrenergic regulation of insulin secretion in the cold acclimated rat.

    Get PDF
    This investigation was based on the hypothesis that long term cold exposure (cold-acclimation) reduces the overall amounts of insulin secreted by the pancreatic islets of Langerhans of the rat and possibly also reduces insulin synthesis. Evidence was obtained indicating that this effect was mediated through the sympathetic postganglionic terminals at the pancreatic beta-cells. The study was made on isolated perfused pancreases in a purpose-built perfusion system, and an artificial perfusion medium with a fluorocarbon as oxygen carrier were used. It was confirmed that insulin secretion from the isolated perfused pancreas, in response to glucose stimulation follows a biphasic secretion pattern. Cold-acclimation reduces insulin secretion as a result of alpha-adrenergic activity. This effect was reversed by the action of the alpha-adrenergic antagonist phento-lamine. A similar inhibitory effect on insulin release was achieved by perfusion with noradrenaline (40 ng/100 ml), although not to the same extent of inhibition which prevailed during cold-acclimation. The results suggested that the demonstrated alpha-adrenergic inhibition is directly effected by the pancreatic sympathetic fibres rather than by adrenal medullary secretion of catecholamines. Insulin output was measured by radioimmunoassay and the results were statistically analysed and discussed. It was concluded that during cold-acclimation, inhibition of insulin secretion and enhancement of catecholamine secretion enabled the cold-acclimated rat to maintain an adequate supply of thermogenic substrates for peripheral metabolism

    Effects of vitamin D-2 or D-3 supplementation on glycaemic control and cardiometabolic risk among people at risk of type 2 diabetes: results of a randomized double-blind placebo-controlled trial

    Get PDF
    This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1111/dom.12625Aims:\textbf{Aims:} To investigate the effect of short-term vitamin D supplementation on cardiometabolic outcomes among individuals with an elevated risk of diabetes. Methods:\textbf{Methods:} In a double-blind placebo-controlled randomized trial, 340 adults who had an elevated risk of type 2 diabetes (non-diabetic hyperglycaemia or positive diabetes risk score) were randomized to either placebo, 100 000 IU vitamin D2_2 (ergocalciferol) or 100 000 IU vitamin D3_3 (cholecalciferol), orally administered monthly for 4 months. The primary outcome was change in glycated haemoglobin (HbA1c) between baseline and 4 months, adjusted for baseline. Secondary outcomes included: blood pressure; lipid levels; apolipoprotein levels; C-reactive protein levels; pulse wave velocity (PWV); anthropometric measures; and safety of the supplementation. Results:\textbf{Results:} The mean [standard deviation (s.d.)] 25-hydroxyvitamin D [25(OH)D]2_2 concentration increased from 5.2 (4.1) to 53.9 (18.5) nmol/l in the D2_2 group, and the mean (s.d.) 25(OH)D3_3 concentration increased from 45.8 (22.6) to 83.8 (22.7) nmol/l in the D3_3 group. There was no effect of vitamin D supplementation on HbA1c: D2_2 versus placebo: −0.05% [95% confidence interval (CI) −0.11, 0.02] or −0.51 mmol/mol (95% CI −1.16, 0.14; p=0.13); D3_3 versus placebo: 0.02% (95% CI −0.04, 0.08) or 0.19 mmol/mol (95% CI −0.46, 0.83; p=0.57). There were no clinically meaningful effects on secondary outcomes, except PWV [D2_2 versus placebo: −0.68 m/s (95% CI −1.31, −0.05); D3_3 versus placebo −0.73 m/s (95% CI −1.42, −0.03)]. No important safety issues were identified. Conclusions:\textbf{Conclusions:} Short-term supplementation with vitamin D2_2 or D3_3 had no effect on HbA1c. The modest reduction in PWV with both D2_2 and D3_3 relative to placebo suggests that vitamin D supplementation has a beneficial effect on arterial stiffness.The trial was jointly sponsored by Queen Mary University of London and the Medical Research Council Epidemiology Unit at Cambridge. The trial was funded from a block grant from the NHS Tower Hamlets Primary Care NHS Trust and East London CLRN, and from MRC Epidemiology Unit core funding (MC_UP_A100_1003, MC_U106179474, MC_UU_12015/5 and MC_UU_12015/4)

    Vitamin D Receptor Gene Polymorphisms Modify Cardiometabolic Response to Vitamin D Supplementation in T2DM Patients

    Get PDF
    There is conflicting evidence on the favorable effects of vitamin D supplementation on metabolic profile in Type 2 diabetes mellitus (T2DM) patients and this might be due to genetic variations in vitamin D receptors (VDRs). Thus, we studied the metabolic effects of a 12-month vitamin D supplementation in T2DM patients according to VDR polymorphisms. A total of 204 T2DM subjects received 2000 IU vitamin D3 daily for 12 months. Serum 25(OH)D and metabolic profiles were measured at baseline and after 12 months. VDR polymorphisms (Taq-I, Bsm-I, Apa-I and Fok-I) were identified using TaqMan genotyping assays. Vitamin D supplementation significantly increased HOMA β-cell function (p = 0.003) as well as significantly decreased triglycerides, total and LDL-cholesterol (p < 0.001). The lowest increment in 25(OH)D levels was detected in patients with Fok-I CC genotypes (p < 0.0001). With vitamin D supplementation, Taq-I GG genotype carriers showed significant improvements in triglycerides, LDL- and total cholesterol, insulin, HbA1c and HOMA-IR (p < 0.005, 0.01, < 0.001, < 0.005, 0.03 and 0.01, respectively). Similarly, Bsm-I TT genotype carriers showed significant improvements in triglycerides (p = 0.01), insulin and HOMA-IR (p-values < 0.05). In conclusion, improvements in metabolic profile due to vitamin D supplementation is influenced by VDR polymorphisms, specifically for carriers of Taq-I GG and Bsm-I TT genotypes

    Anopheles Imd Pathway Factors and Effectors in Infection Intensity-Dependent Anti-Plasmodium Action

    Get PDF
    The Anopheles gambiae immune response against Plasmodium falciparum, an etiological agent of human malaria, has been identified as a source of potential anti-Plasmodium genes and mechanisms to be exploited in efforts to control the malaria transmission cycle. One such mechanism is the Imd pathway, a conserved immune signaling pathway that has potent anti-P. falciparum activity. Silencing the expression of caspar, a negative regulator of the Imd pathway, or over-expressing rel2, an Imd pathway-controlled NFkappaB transcription factor, confers a resistant phenotype on A. gambiae mosquitoes that involves an array of immune effector genes. However, unexplored features of this powerful mechanism that may be essential for the implementation of a malaria control strategy still remain. Using RNA interference to singly or dually silence caspar and other components of the Imd pathway, we have identified genes participating in the anti-Plasmodium signaling module regulated by Caspar, each of which represents a potential target to achieve over-activation of the pathway. We also determined that the Imd pathway is most potent against the parasite's ookinete stage, yet also has reasonable activity against early oocysts and lesser activity against late oocysts. We further demonstrated that caspar silencing alone is sufficient to induce a robust anti-P. falciparum response even in the relative absence of resident gut microbiota. Finally, we established the relevance of the Imd pathway components and regulated effectors TEP1, APL1, and LRIM1 in parasite infection intensity-dependent defense, thereby shedding light on the relevance of laboratory versus natural infection intensity models. Our results highlight the physiological considerations that are integral to a thoughtful implementation of Imd pathway manipulation in A. gambiae as part of an effort to limit the malaria transmission cycle, and they reveal a variety of previously unrecognized nuances in the Imd-directed immune response against P. falciparum

    Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combined effects of multiple density-dependent, regulatory processes may have an important impact on the growth and stability of a population. In a malaria model system, it has been shown that the progression of <it>Plasmodium berghei </it>through <it>Anopheles stephensi </it>and the survival of the mosquito both depend non-linearly on parasite density. These processes regulating the development of the malaria parasite within the mosquito may influence the success of transmission-blocking interventions (TBIs) currently under development.</p> <p>Methods</p> <p>An individual-based stochastic mathematical model is used to investigate the combined impact of these multiple regulatory processes and examine how TBIs, which target different parasite life-stages within the mosquito, may influence overall parasite transmission.</p> <p>Results</p> <p>The best parasite molecular targets will vary between different epidemiological settings. Interventions that reduce ookinete density beneath a threshold level are likely to have auxiliary benefits, as transmission would be further reduced by density-dependent processes that restrict sporogonic development at low parasite densities. TBIs which reduce parasite density but fail to clear the parasite could cause a modest increase in transmission by increasing the number of infectious bites made by a mosquito during its lifetime whilst failing to sufficiently reduce its infectivity. Interventions with a higher variance in efficacy will therefore tend to cause a greater reduction in overall transmission than a TBI with a more uniform effectiveness. Care should be taken when interpreting these results as parasite intensity values in natural parasite-vector combinations of human malaria are likely to be significantly lower than those in this model system.</p> <p>Conclusions</p> <p>A greater understanding of the development of the malaria parasite within the mosquito is required to fully evaluate the impact of TBIs. If parasite-induced vector mortality influenced the population dynamics of <it>Plasmodium </it>species infecting humans in malaria endemic regions, it would be important to quantify the variability and duration of TBI efficacy to ensure that community benefits of control measures are not overestimated.</p

    Engineered Anopheles Immunity to Plasmodium Infection

    Get PDF
    A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control

    Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

    Get PDF

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore